Exploiting the Classification Performance of Support Vector Machines with Multi-Temporal Moderate-Resolution Imaging Spectroradiometer (MODIS) Data in Areas of Agreement and Disagreement of Existing Land Cover Products

نویسندگان

  • Francesco Vuolo
  • Clement Atzberger
چکیده

Several studies have focused in the past on global land cover (LC) datasets harmonization and inter-comparison and have found significant inconsistencies. Despite the known discrepancies between existing products derived from medium resolution satellite sensor data, little emphasis has been placed on examining these disagreements to improve the overall classification accuracy of future land cover maps. This work evaluates the classification performance of a least square support vector machine (LS-SVM) algorithm with respect to areas of agreement and disagreement between two existing land cover maps. The approach involves the use of time series of Moderate-resolution Imaging Spectroradiometer (MODIS) 250-m Normalized Difference Vegetation Index (NDVI) (16-day composites) and gridded climatic indicators. LS-SVM is trained on reference samples obtained through visual interpretation of Google Earth (GE) high resolution imagery. The core of the training process is based on repeated random splits of the training dataset to select a small set of suitable support vectors optimizing class separability. A large number of independent validation samples spread over three contrasting regions in Europe (Eastern Austria, Macedonia and Southern France) are used to calculate classification accuracies for the LS-SVM NDVI-derived LC map and for two (globally available) LC products: GLC2000 and GlobCover. The LS-SVM LC map reported an overall accuracy of 70%. Classification accuracies ranged from 71% where GlobCover and GLC2000 agreed to 68% for areas of disagreement. Results indicate that existing LC OPEN ACCESS Remote Sens. 2012, 4 3144 products are as accurate as the LS-SVM LC map in areas of agreement (with little margin for improvements), while classification accuracy is substantially better for the LS-SVM LC map in areas of disagreement. On average, the LS-SVM LC map was 14% and 18% more accurate compared to GlobCover and GLC2000, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of LST products of ASTER and MODIS Sensors Using STDFA Model

Land Surface Temperature (LST) is one of the most important physical and climatological  crucial yet variable parameter in environmental phenomena studies such as, soil moisture conditions, urban heat island, vegetation health, fire risk for forest areas and heats effects on human’s health. These studies need to land surface temperature with high spatial and temporal resolution. Remote sensing ...

متن کامل

Investigation of changes in surface urban heat-island (SUHI) in day and night using multi-temporal MODIS sensor data products (Case Study: Tehran metropolitan)

The term urban heat island (UHI), described the phenomenon of climate change in urban areas compared with surrounding rural areas. UHI effects include: increasing in energy and water consumption, air pollution expansion and interfering in thermal comfort. Surface urban heat island (SUHI) contains patterns of land surface temperature (LST) in urban areas that has interaction with UHI in urban ca...

متن کامل

Regional Scale Land Use/land Cover Classification Using Temporal Series of Modis Data

This paper describes a methodology for systematic land use/land cover classification on a regional scale, with emphasis on a low cost and highly automatized approach. This methodology is based on multitemporal analyses of surface reflectance data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which is located on board NASA’s Terra and Aqua satellites and features high temporal ...

متن کامل

A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets

Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational l...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012